A KNOWLEDGE-BASED VARIABLE SELECTION METHOD FOR BOX-COX TRANSFORMATION

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The lasso method for variable selection in the Cox model.

I propose a new method for variable selection and shrinkage in Cox's proportional hazards model. My proposal minimizes the log partial likelihood subject to the sum of the absolute values of the parameters being bounded by a constant. Because of the nature of this constraint, it shrinks coefficients and produces some coefficients that are exactly zero. As a result it reduces the estimation vari...

متن کامل

Properties of the Box-Cox transformation for pattern classification

The Box–Cox transformation [1,2] (Box and Cox, 1964; Sakia, 1992) has been regarded as a parametric pre-processing technique aimed at making the distribution of a set of points approximately Gaussian. Since normality represents an assumption underlying many statistical data analysis tools, such technique has been widely applied in different fields of Computer Science. In this paper we will prov...

متن کامل

A new approach to the Box–Cox transformation

We propose a new methodology to estimate λ, the parameter of the Box–Cox transformation, as well as an alternative method to determine plausible values for it. The former is accomplished by defining a grid of values for λ and further perform a normality test on the λ-transformed data. The optimum value of λ, say ∗ λ , is such that the p-value from the normality test is the highest. The set of p...

متن کامل

Predicting a future lifetime through Box-Cox transformation.

In predicting a future lifetime based on a sample of past lifetimes, the Box-Cox transformation method provides a simple and unified procedure that is shown in this article to meet or often outperform the corresponding frequentist solution in terms of coverage probability and average length of prediction intervals. Kullback-Leibler information and second-order asymptotic expansion are used to j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JOURNAL OF THE JAPAN STATISTICAL SOCIETY

سال: 2002

ISSN: 1348-6365,1882-2754

DOI: 10.14490/jjss.32.15